
Thinking in design 
patterns

Damayanthi Herath



GRASP 



Design Patterns



 “Learning from 
your mistakes makes 
you smart. Learning 
from other people’s 
mistakes makes you 
a genius.”



Responsibility Driven Design



Responsibility Driven Design

Responsibility:

Definition: A contract or obligation of a classifier

Doing responsibilities include:
● directly—e.g. create object, perform calculation 
● initiate action in other objects
● control and coordinate activities in other objects

 Knowing responsibilities include knowledge of:
● Private encapsulated data
● Related objects
● Derivable or calculable items



Responsibility Driven Design (RDD)

● RDD sees an OO Design as a community of collaborating 
responsible objects. 

● RDD involves assigning responsibilities to classes which should 
be based on proven principles.



GRASP: 
General Responsibility 
Assignment Software Patterns (or 
Principles):



Design patterns Overload?



GRASP: General Responsibility Assignment Software Patterns (or 
Principles):

● Information Expert 
● Creator
● Low coupling
● Controller
● High Cohesion



Problem 
What is a general principle of assigning responsibilities to objects?

Design model:
● May have 100s or 1000s of software classes
● May have 100s or 1000s of responsibilities
● Useful to have a general principle to guide choice of assignment

Solution

Information Expert

Assign responsibility to the information expert—the class that has the information 
necessary to fulfil the responsibility.



Problem
Who should be responsible for creating a new instance of some class?

Solution

Creator
Assign class B responsibility to create instances of class A if one of these is true (the 
more the better):
● B “contains” or compositely aggregates A.
● B records A.
● B closely uses A.
● B has the initializing data for A that will be passed to A when it is created. 

Thus B is an Expert with respect to creating A.



Problem

How to support low dependency, low change impact, and increased reuse?

Coupling: Measure of how strongly one element is connected to, has knowledge of or 
relies on others.
Problems for a class with high coupling:
● Forced changes: result of changes in related classes
● Harder to understand in isolation

Solution

Low Coupling
Assign responsibility so that coupling remains low. 
Use this principle to evaluate alternatives.



Problem
What first object beyond the UI layer receives and coordinates (“controls”) a 
system operation?

Solution

Controller
Assign responsibility to a class representing one of:

● the overall “system”, a “root” object, a device the software is running within, or a 
major subsystem

● a use case scenario that deals with the event, e.g. use case or session controller



Problem
How to keep objects focussed, understandable, and manageable, and as a side effect, 
support Low Coupling?

(functional) cohesion:
A measure of how strongly (functionally) related and focussed the responsibilities of 
an element are



Solution

High Cohesion

Assign a responsibility so that cohesion remains high. Use this to evaluate 
alternatives.

Class with low cohesion:

● Hard to comprehend
● Hard to reuse
● Hard to maintain
● Delicate; constantly affected by change




